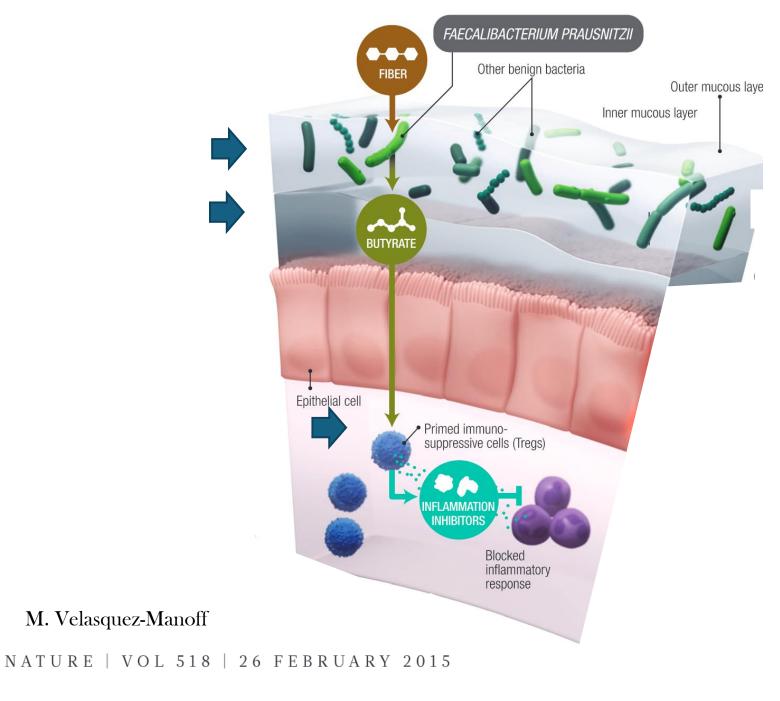

Join the Conversation: Comprehensive approach to microbiota analysis interpretation

Linda Toresson, DVM Swedish Specialist in diseases of dogs & cats Swedish Specialist in internal medicine PhD




Gastrointestinal

The intestinal microbiota executes many important

Immune regulation Mucosal defense Integrity of mucosal barrier Vitamin synthesis

Dysbiosis in people with IBD

Alterations of resident microbial composition and function

Common features: decreased bacterial diversity, loss of core bacteria

- Significant reduction of beneficial microbes ↓ short-chain fatty acid producing bacteria Faecalibacterium, Lachnospiraceae, Roseburia, and Ruminococcaceae
- Increase of resident pathobionts, especially Enterobacteraceae

Increased primary bile acids (BA) + decreased secondary BA and SCFAs (butyrate and propionate)

Beyond Random Fecal Microbial Transplants

Next Generation Personalized Approaches to Normalize Dysbiotic Microbiota for Treating IBD

Dysbios in CE dogs vs healthy:

- Less diverse microbiome depletion, fewer bact. species
- Loss of important core bacteria required for proper microbiome function (*Faecalibacterium, P. hiranonis* etc)

(Blautia spp., Faecalibacterium spp., Turicibacter spp Fusobacterium spp)

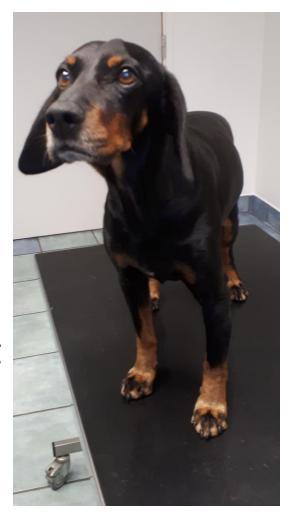
OPEN ORCESS Freely available online

PLOS ONE

The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease

Jan S. Suchodolski¹*, Melissa E. Markel¹, Jose F. Garcia-Mazcorro², Stefan Unterer³, Romy M. Heilmann¹, Scot E. Dowd⁴, Priyanka Kachroo⁵, Ivan Ivanov⁵, Yasushi Minamoto¹, Enricka M. Dillman⁵, Jörg M. Steiner¹, Audrey K. Cook⁵, Linda Toresson⁶

Traditional bacterial culture


- Minor part of the intestinal microbiota culturable with standard culture techniques
- Consists mainly of anaerobes

Many bacterial species:

- have specific, complex nutritional needs
- rely on symbiotic relationships with other bacteria in the gut environment

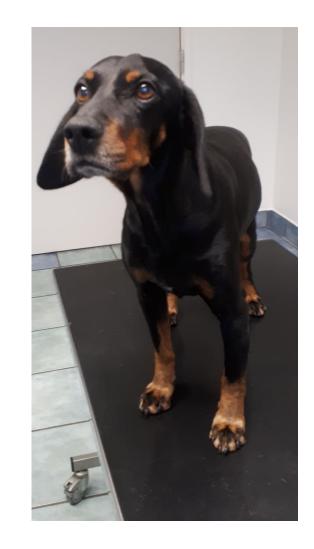
"Jycke", mixed-breed dog, intact male, 7 Y/A

- Attacks of abdominal pain, lethargy, recurrent diarrhea for > 1 year
- Treated twice for hemolytic *E.coli* w. amoxicillin according to culture + sensitivity testing
- No improvement dog owners went to a new vet

"Jycke", mixed-breed dog, 7 Y/A

- New fecal sample:
- Neg. parasites
- 3rd course of amoxicillin...

Escherichia coli (haemolytic) 1)


Antibiogram org. no. 1) Ampicillin S Amoxicillin S * Amoxicillin + Clavul S Cefalexin S Cefovecin S * Ceftiofur S Cefquinome S * Polymyxin B S Colistin S * Gentamicin S Tetracycline S stands for all tetracyclines Doxycycline S * Enrofloxacin S stands for all fluochino-lones Marbofloxacin S Pradofloxacin S * Nitrofurantoin S Sulfamethox./Trim. S also valid for other sulfonamide/trimeth.-combinations Chloramphenicol I stands for all phenicoles (e.g. Florphenicole) Imipenem S Strictly verify indication Meropenem S */ Strictly verify indication

"Jycke", mixed-breed dog

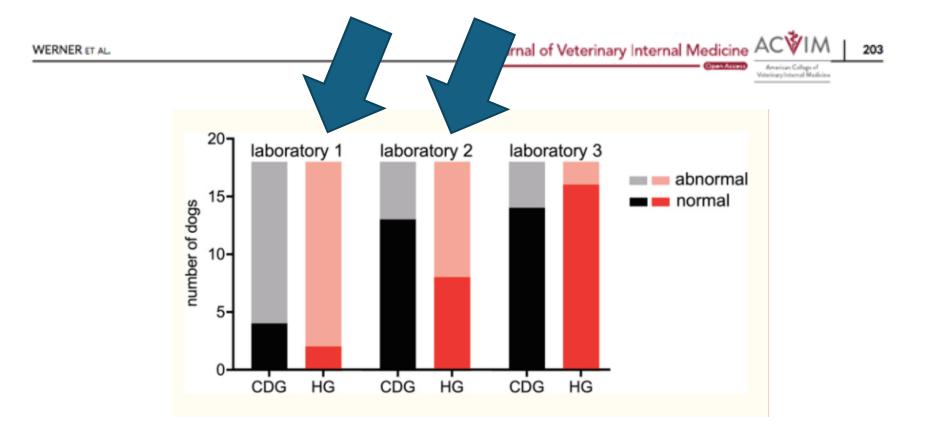
Next step: endoscopy

Histopathology report

- Mild diffuse lymphocytic-plasmacytic gastritis, presence of mild-moderate *Helicobact* spp.
- Mod.-severe LP chronic enteritis
- >Amoxicillin, metronidazole, PPi

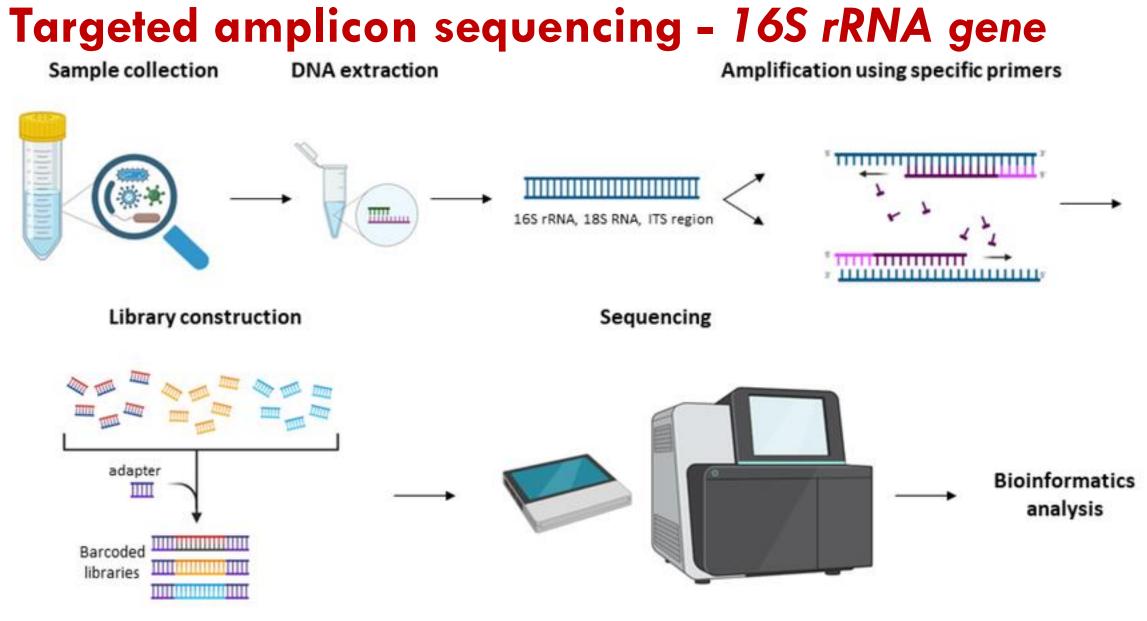
"Jycke", mixed-breed dog (currently 15 Y/A)

• Treated with:

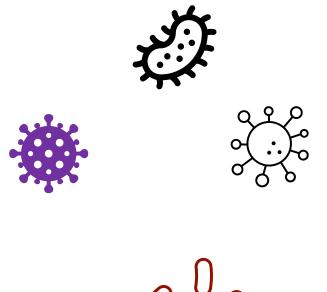

- Hydrolyzed soy-based diet
- Probiotics
- Prebiotics
- Immunosuppression Prednisolone
- Addition 2nd line immunosuppressive:
- Azathioprine 🗙
- Cyclosporine X
- Mycophenolate 🔽

4 courses of unnecessary antibiotics....




- Compared fecal culture 3 different anonymous vet labs with the dysbiosis index
- 18 dogs chronic diarrhea (CD), 18 healthy dogs (H)
- Faecal cultures failed to distinguish between CD and H
- *Clostridium spp* as prevalent in H as CD
- High level of interlaboratory variation for culture

- 2/3 labs reported abnormal fecal microbiome, based on culture, in more healthy dogs than CD
- Growth of hemolytic *E. coli* could not differ CD from H
- → Fecal cultures failed to distinguish between CD and H


- Dysbiosis index significantly higher in dogs w CD/H (p=0.0002)
- Green dots decreased abundance of Peptacetobacter hiranonis
- Abundance of *Faecalibacterium* and *Fusobacterium* sign. lower in CD/H

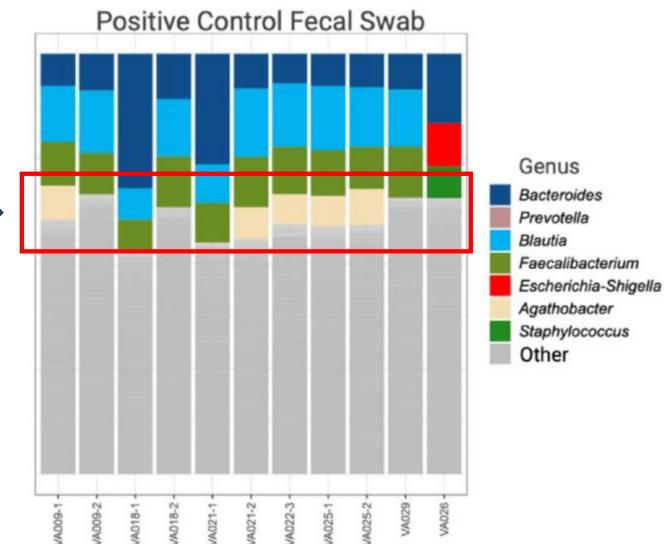
From "Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics" Athanasopoulou et al, Biomedicines

Targeted amplicon sequencing - 16S rRNA gene

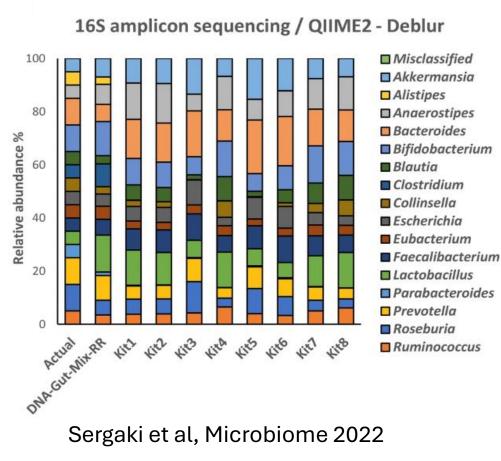
- Pros
 - Rapid, non-culturable
 - Detection of many bacterial taxa simultaneously
 - · identifies changes in bacterial communities
- Cons
 - Low taxonomic resolution on species level
 - mostly on genus level
 - only relative proportions of bacterial taxa reported
 - no absolute quantification
 - low reproducibility between runs
 - technology changes rapidly (results change)
 - no analytical validation reported
 - difficult to follow up patients over time

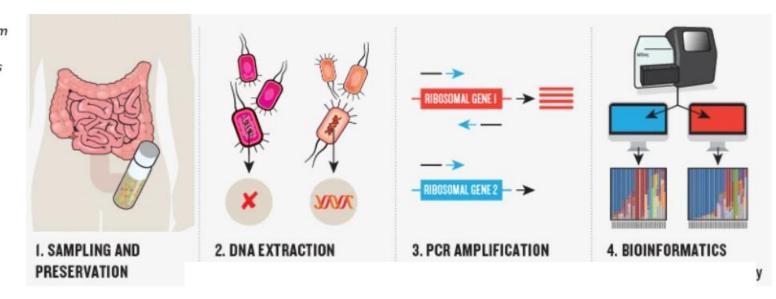
Applied Microbiology and Biotechnology (2024) 108:367 https://doi.org/10.1007/s00253-024-13198-z

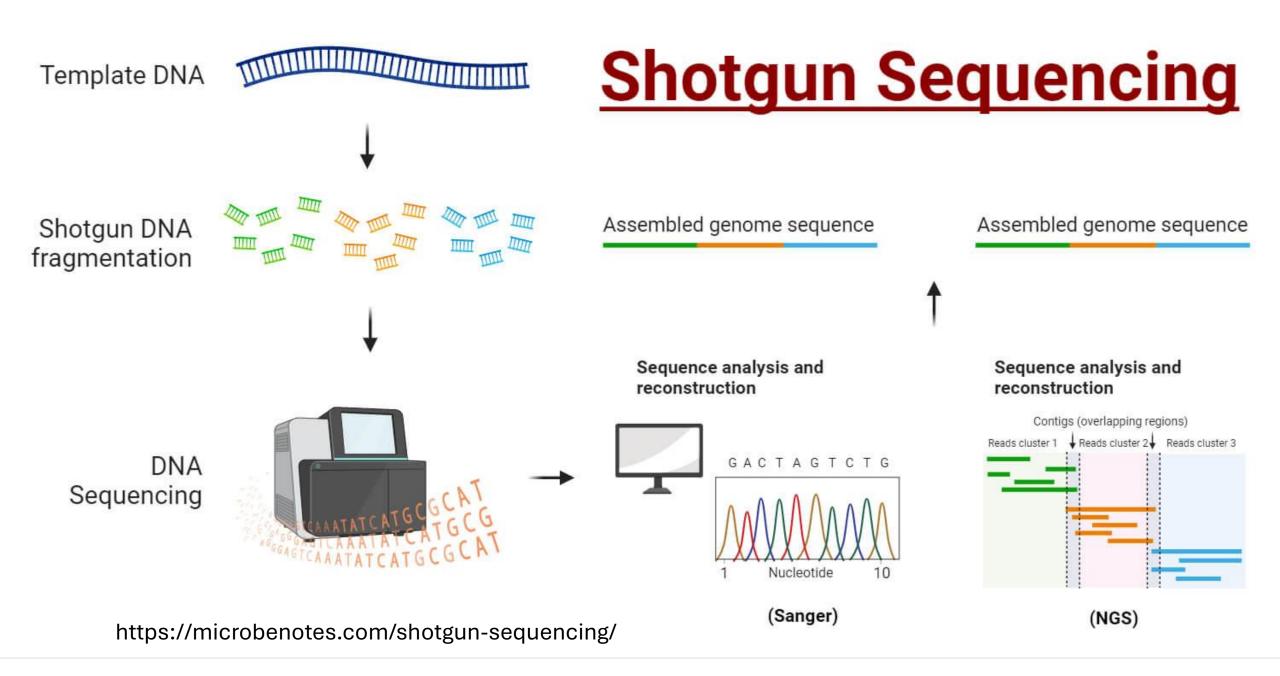
METHODS AND PROTOCOLS


Quantifying variation across 16S rRNA gene sequencing runs in human microbiome studies

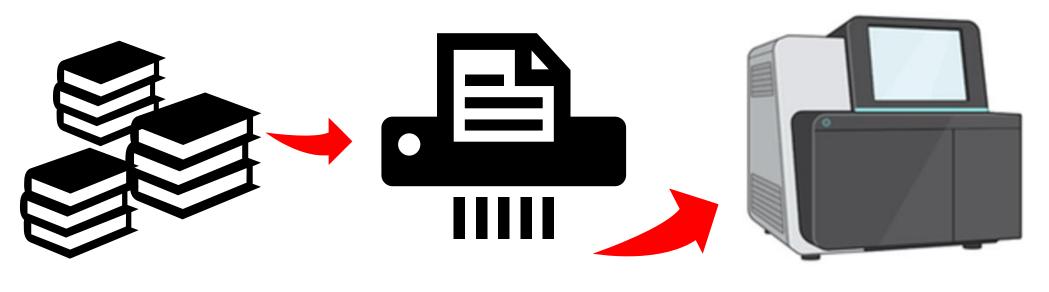
Andrew J. Hoisington^{1,2,3,4} · Christopher E. Stamper^{1,2,3} · Joseph C. Ellis⁵ · Christopher A. Lowry^{1,2,3,6} · Lisa A. Brenner^{1,2,3,7,8}

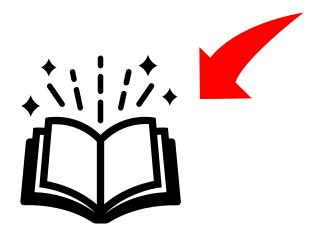

- Standardized positive controlaliquots of the same sample analyzed multiple times at. The same lab
 - High intra- and interassay variability


Gastrointestinal

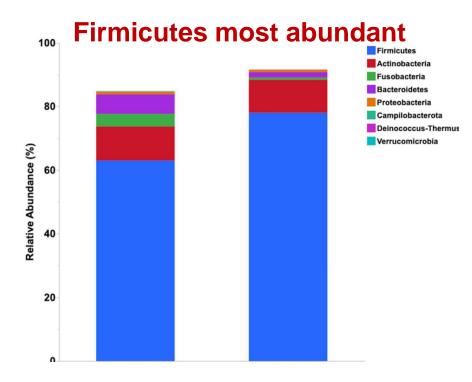


Limited reproducibility




Relatively **minor alterations** in the DNA extraction procedure or in the bioinformatics analysis can give a distorted view between studies

DNA Shotgun sequencing – if the microbiome was a book...



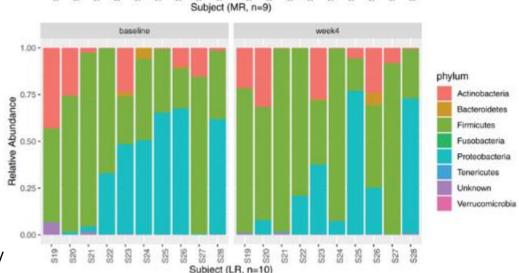
DNA Shotgun sequencing (Metagenomics)

- Provides information about whole genome and microbial communities
- Pros
 - Functional (gene content) and identification of bacterial taxa
 - PCR independent (no bias)
 - Better resolution at species and strain level
- Cons
 - Higher cost per sample
 - Requiring very extensive computer processing power
 - Reports only relative proportions (no true quantification)

Major differences in reported taxonomy, even at baseline, for healthy dogs

Liversidge BD et al, Front Microbiol 2024

Tanprasertsuk et al, PeerJ 2021


https://pubmed.ncbi.nlm.nih.gov/34249503/

Bacteroides most abundant

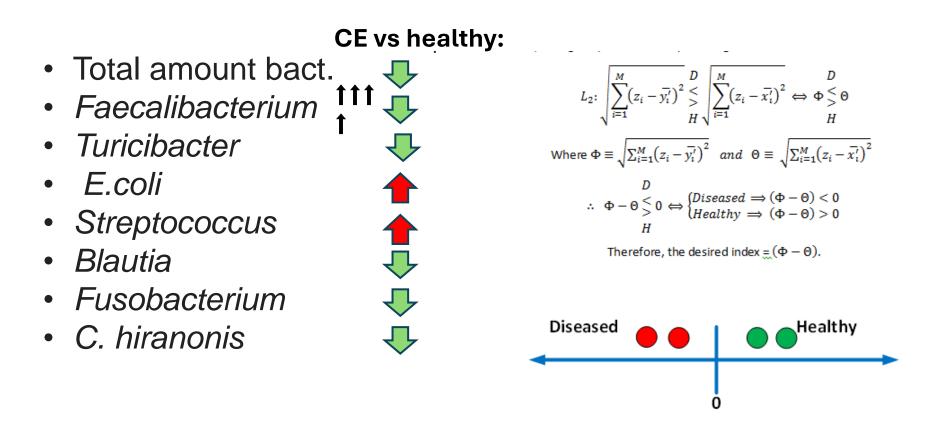
Allaway et al, AEM 2020

https://doi.org/10.1128/AEM.00562-20

Proteobacteria most abundant

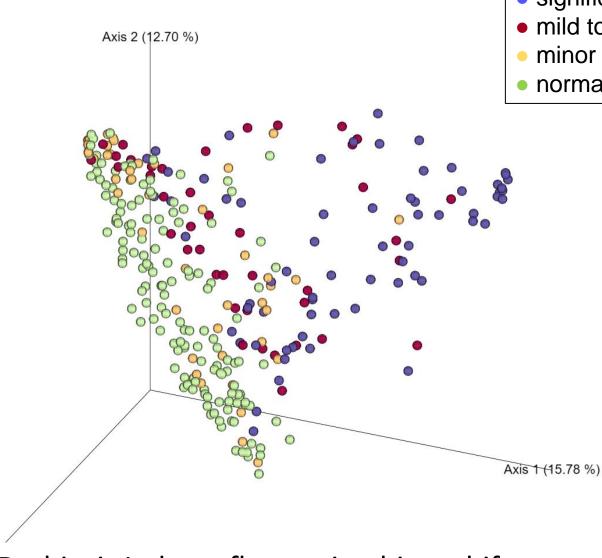
The canine/feline Core Microbiome - DNA shotgun sequencing

@taz_species_level	Dog 1	Dog 2	Dog 3	Dog 4	Dog 5	Dog 6	Dog 7	Dog 8	Dog 9	Dog 10	Dog 11	Dog 12	Cour
sOther	18.0%	21.2%	18.7%	19.3%	14.3%	30.9%	28.9%	40.1%	35.2%	14.3%	14.8%	14.2%	12
s_[Ruminococcus]_gnavus	3.7%	1.7%	23.5%	5.6%	1.4%	3.6%	2.7%	12.3%	1.4%	2.5%	8.3%	3.4%	12
s_[Clostridium]_hiranonis 🛛 🚤	10.2%	16.0%	0.8%	3.4%	0.7%	17.3%	0.7%	0.0%	1.8%	0.4%	0.3%	8.1%	12
s_Clostridium_spAT4	1.0%	0.5%	0.8%	0.1%	0.8%	3.0%	3.3%	2.6%	1.0%	0.8%	7.3%	0.4%	12
s_Blautia_wexlerae	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%	5.9%	6.0%	0.6%	1.4%	0.0%	0.1%	12
sBlautia_hansenii	124	2.8%	0.9%	2.8%	0.5%	2.2%	0.2%	0.6%	0.7%	0.3%	0.6%	1.3%	12
s_Faecalibacterium_prausnitzii	1.8%	2.2%	0.7%	0.0%	2.6%	0.2%	0.6%	0.0%	2.3%	2.7%	0.0%	0.0%	12
s_Bacteroides_coprocola	0.1%	0.3%	0.8%	0.2%	1.7%	0.2%	1.2%	0.3%	2.0%	0.8%	2.9%	0.0%	12
sFournierella_massiliensis	0.12	0.8%	0.4%	0.0%	0.4%	0.2%	0.2%	0.1%	1.1%	3.9%	3.0%	0.0%	12
s_Coprococcus_spHPP0074	0.97	0.4%	1.12	0.8%	0.2%	1.4%	0.1%	0.1%	0.2%	0.1%	0.0%	0.8%	12
sBacteroides_plebeius	0.0%	0.11	0.64	0.1%	0.0%	0.3%	0.5%	0.0%	1.0%	2.9%	0.0%	0.0%	12
sButyricicoccus_pullicaecorum	0.2%	9.0%	0.6%	0.2%	0.6%	0.5%	0.3%	0.6%	0.2%	0.9%	0.6%	0.0%	12
sFlavonifractor_plautii	0.1%	0.1%	9.0%	0.0%	0.1%	0.0%	0.0%	3.1%	0.1%	0.1%	0.0%	0.0%	12
s_[Clostridium]_glycyrrhizinilyticum	0.5%	0.2%	0.2%	0.1%	0.1%	0.3%	0.0%	1.2%	0.1%	0.1%	0.2%	0.5%	12
sBlautia_spMarseille-P3201T	0.4%	0.5%	0.2*/	0.9%	0.2%	0.5%	0.1%	0.2%	0.2%	0.1%	0.1%	0.2%	12
sHoldemanella_biformis	0.3%	0.4%	0.0%	0.0.4	0.1%	0.9%	0.8%	0.0%	0.2%	0.1%	0.0%	0.0%	12
sBacteroides_stercoris	0.0%	0.0%	0.0%	1.9%	0.3%	0.0%	0.0%	0.0%	0.1%	0.1%	0.2%	0.0%	12
s_Coprococcus_spHPP0048	0.4%	0.2%	0.4%	0.47	0.1%	0.15	0.1%	0.0%	0.1%	0.0%	0.0%	0.3%	12
sTyzzerella_nexilis	0.1%	0.1%	0.0%	0.2%	0.0%	0.1%	0.0%	1.8%	0.0%	0.0%	0.2%	0.1%	12
sBlautia_obeum	0.2%	0.1%	0.1%	0.0%	9.1%	0.1%	0.27	0.7%	0.1%	0.2%	0.0%	0.1%	12
sAbsiella_dolichum	0.2%	0.1%	0.0%	0.7%	0.0%	0.00	0.0%	0.1%	0.1%	0.0%	0.0%	0.1%	12
s_[Eubacterium]_hallii	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.7%	0.0%	0.0%	0.0%	0.0%	0.0%	12
s_Blautia_massiliensis	0.2%	0.2%	0.2%	0.1%	0.2%	0.022	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	12
sBacteroides_fragilis	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	12
s_Collinsella_intestinalis	34.3%	21.3%	33.7%	59.4%	20.6%	18.7%	4.0%	0.0%	23.14	20.8%	48.5%	55.8%	11
s_Prevotella_copri	9.6%	8.3%	5.8%	0.0%	44.5%	7.3%	23.04	7.37	9.8%	38.5%	3.7%	0.0%	11
s_Allobaculum_stercoricanis	9.3%	10.5%	7.5%	1.9%	2.4%	0.0%	0.3%	0.0%	4.5%		1.8%	8.0%	11
s_Catenibacterium_mitsuokai	0.0%	0.4%	0.0%	0.0%	0.0%	4.8%	0.7%	9.0%	0.00	0.1%	0.0%		11
s_Collinsella_phocaeensis s Sutterella wadsworthensis	0.1% 0.1%	0.4%	0.2%	0.2%	0.7% 0.8%	0.1% 0.3%	0.2% 0.4%	0.0%	0.4% 0.1%	1.2% 0.7%	0.2%	0.2%	11
	0.1%	0.2%	0.2%	0.0%	0.8%	0.3%	0.4%	0.3%	0.1%	0.27	0.0%	0.0%	11
s_Collinsella_stercoris	0.2%	0.2%	0.3%	0.3%	0.2%	0.2%	1.8%	0.0%	0.1%	0.2%	0.4%		10
sMegamonas_funiformis sSutterella_spKLE1602	0.1%	0.2%	0.02	0.0%	0.1%	0.8%	0.4%	0.3%	0.1%	0.4%	0.574	0.0%	10
sOuterena_spKEE1002 sMegamonas_spCalf98-2	0.1%	0.2%	0.0%	0.0%	0.0%	0.4%	1.0%	0.0%	0.0%	0.54	0.2%	0.0%	
s_Slackia_piriformis	0.9%	0.1%	0.5%	0.0%	0.6%	0.0%	0.1%	0.0%	0.8%	0.6%	0.0%	9.0%	9
s_Escherichia_coli	0.0%	0.1%	0.0%	0.0%	0.0%	0.4%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	9
s_Lactococcus_lactis	0.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.07	0.1%	7
sClostridium_perfringens	0.0%	4.2%	0.0%	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	6
s_Streptococcus_infantarius	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	0.0%	0.1%	0.0	6
s_Lactobacillus_delbrueckii	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	6
s_bacterium_LF-3	0.0%	0.1%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	6
s_Streptococcus_gallolyticus	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	1.8%	0.0%	5
s_Lactobacillus_sakei	0.0%	0.0%	0.0%	0.0%	0.1%	0.4%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	5
sBifidobacterium_kashiwanohense	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	5
s_Streptococcus_lutetiensis	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	4.6%	0.0%	0.5%	0.0%	4
s_Anaerobiospirillum_succiniciproducens	0.0%	1.4%	0.0%	0.0%	0.8%	0.0%	0.0%	0.0%	1.3%	0.0%	0.0%	0.0%	4
sStreptococcus_thermophilus	2.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	4
s_Lactococcus_piscium	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	4
s_Bifidobacterium_pseudocatenulatum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	14.5%	0.0%	0.0%	0.0%	0.0%	0.0%	3
sEggerthella_lenta	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.1%	0.0%	0.0%	0.0%	0.0%	3
s_Lactococcus_garvieae	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3
s_Propionibacterium_freudenreichii	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.3%	2
sBilophila_wadsworthia	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	2
sBifidobacterium_catenulatum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	2
s_Enterococcus_hirae	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2
s_Lactobacillus_mucosae	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2
s_Sellimonas_intestinalis	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	13.9%	0.0%	0.0%	0.0%	0.0%	1
sBifidobacterium_gallinarum	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%	0.0%	0.0%	0.0%	1
s_Lactococcus_spDD01	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
s_Lactobacillus_animalis	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1
s_Providencia_alcalifaciens	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0
sStaphylococcus_succinus	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0


- 1.065 bacteria species identified across 12 healthy dogs
- 25 identified in all 12/12 dogs
- 36 identified in 9/12 dogs

- Top core bacterial species and genera include
 - Peptacetobacter hiranonis
 - Blautia
 - Faecalibacterium

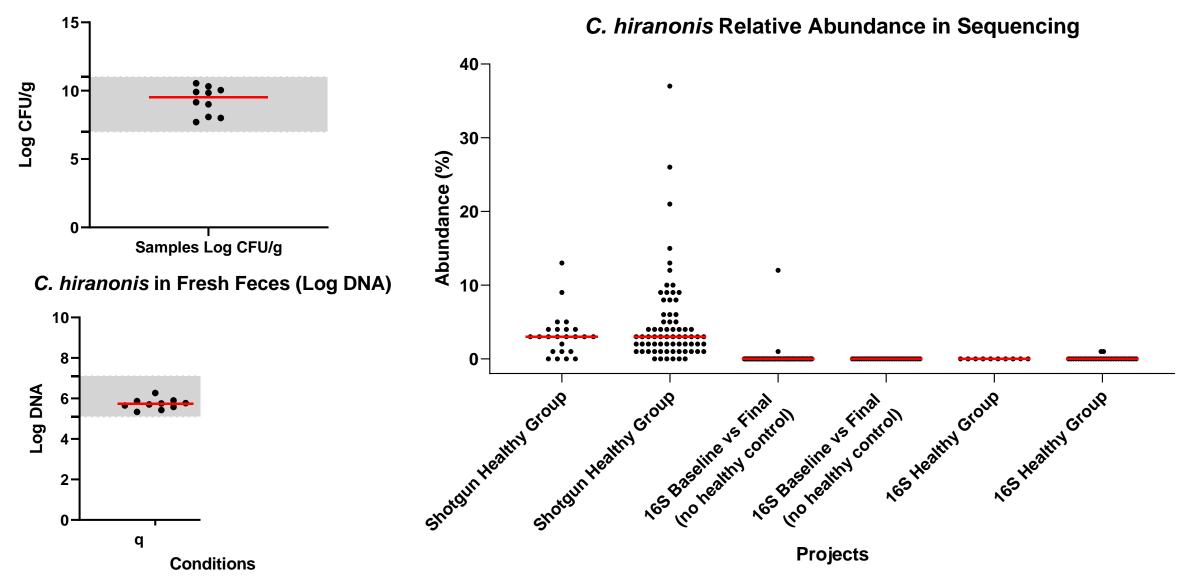
Quantitative PCR (DI)

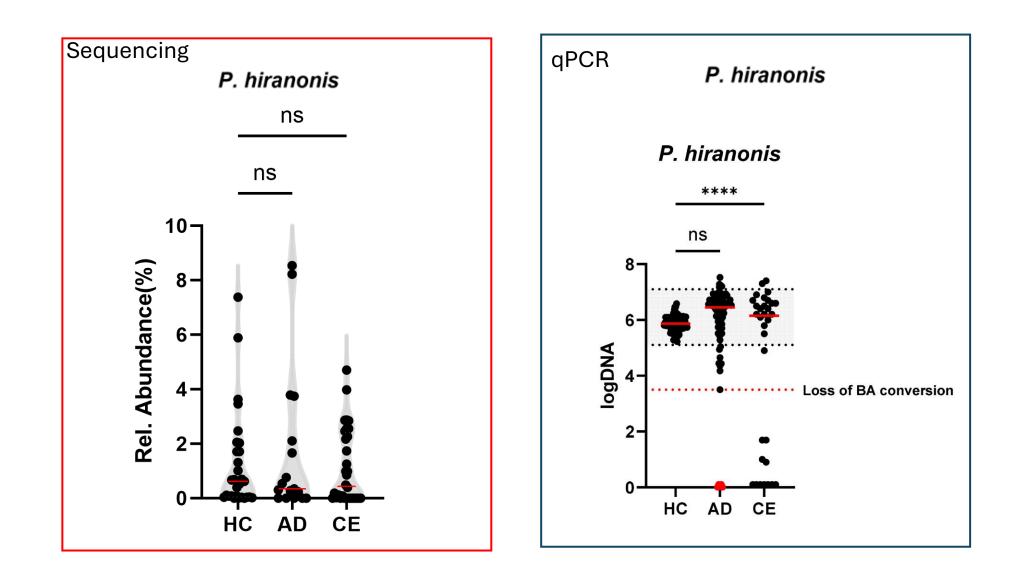

- Pros
 - Quantitative: absolute abundance
 - Target selection: taxonomic and functional
 - Highly reproducible across studies
 - if same DNA extraction and PCR protocol used
 - Allows establishment of reference intervals for specific taxa
- Cons
 - Specific to the primers selected
 - Limited number of primers

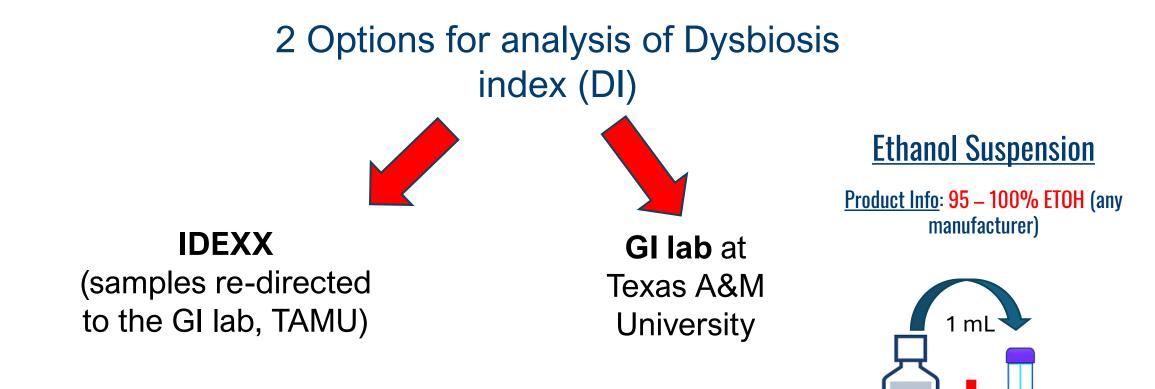
Dysbios Index in dogs with CE - PCR based (7 bact groups + total)

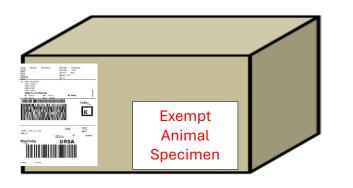
A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy FEMS Microbiology Ecology, 93, 2017,

MK AlShawaqfeh^{1,2}, B Wajid^{1,3}, Y Minamoto¹, M Markel¹, JA Lidbury¹, JM Steiner¹, E Serpedin² and JS Suchodolski^{1,*}




- significant dysbiosis (DI > 2) • mild to moderate changes (DI between 0-2) minor changes (DI < 0, some taxa abnormal) normal (DI < 0, all taxa normal) 10 -8. 6 4 -Dysbiosis Index 2 n. -6 Clinically healthy Acute diamine and a disease on antibiotics Clinically Acute diamine antibiotics Chronic enterior poes on antibiotics Non-Bastrointestinal disease on antibiotics
- Dysbiosis Index reflects microbiota shifts


Sung et al, Animals 2023


P. hiranonis abundance in feces – often undetected on sequencing

C. hiranonis Viability in Fresh Feces (Log CFU/g)

If shipping directly to the GI lab – contact them first for shipping instructions

Email: gilab@tamu.edu

Suspension Ratio: 1 mL ETOH : 0.5 g feces

95-100% ETOH

Use 1:2 ratio of feces : ETOH Total ETOH volume in your shipment <u>must not exceed 100 mL</u>

"Tyson", intact male Rottweiler, 4.5 Y

Referral, partially steroid- refractory PLE

- Liquid diarrhea 5-6 times/24 hrs since 4 months
- Lethargy, hyporexia, weight loss (12%)

Tx with cobalamin + corticosteroids for 60 days, tried hydrolyzed diet

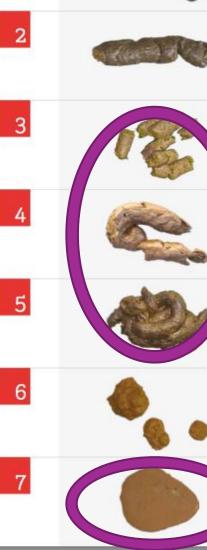
and high fiber diet

Suffers badly from corticosteroid side effects

- Panhypoproteinemia (TP 37 g/L), hypoalbuminemia (18 g/L), hypocholesterolemia (1.6 mmol/L)
- Low-fat hydrolyzed salmon-based diet, rivaroxabam + mirtazapin

"Tyson", intact male Rottweiler, 4.5 Y

- Histopathology report- moderate LP inflammation, mild lymphangiectasia
- No improvement of diarrhea/albumin \rightarrow chlorambucil
- 3 w later: alb 23 g/L still diarrhea
 Dysbiosis index: -4.3


FMT– 3 treatments; rectal enema, 10-20 days interval between tx

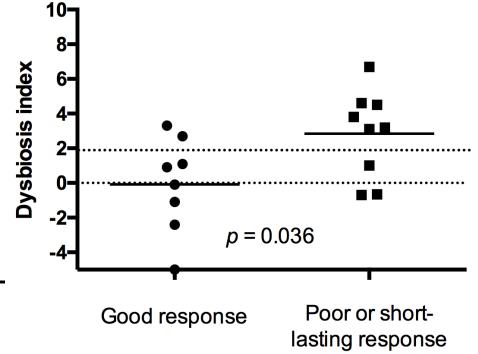
- After FMT 1 stopped being fecally incontinent, freq. of defecation mildly
- After FMT 2 BW increased 0.8 kg, more active, started playing, fecal score 5/7, freq. 3-5/24 hrs
- After FMT 3 back to his normal self, plays a lot, + 2 kg, fecal score 3-5/7

"Tyson", intact male Rottweiler, 5.3

- Doing very well, plays a lot with the younger dog, normal appetite, no side effects of meds
- Defecates x 4-5
- BCS 5/9, normal muscle status
- Serum biochemistry WNL
- Budesonide 3 mg/q 24 hrs, Chlorambucil 4 mg q 24 hrs under tapering

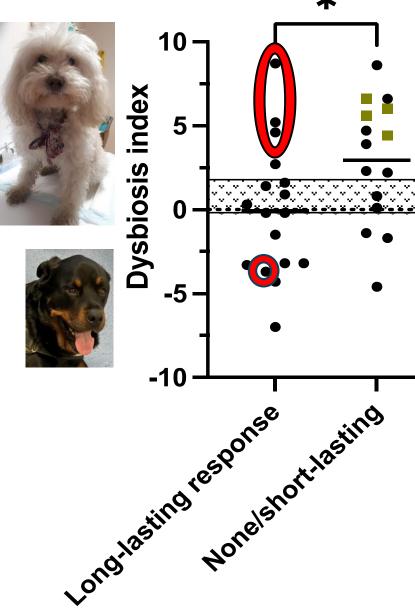
Fecal Scoring Chart

SCORE


Article

Clinical Effects of Faecal Microbiota Transplantation as Adjunctive Therapy in Dogs with Chronic Enteropathies— A Retrospective Case Series of 41 Dogs

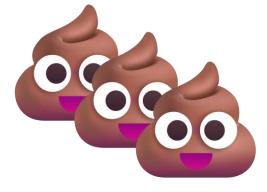
Linda Toresson ^{1,2,*}, Thomas Spillmann ¹, Rachel Pilla ³, Ulrika Ludvigsson ², Josefin Hellgren ², Gunilla Olmedal ² and Jan S. Suchodolski ³


- Retrospective study, n=41
- 31/41 dogs (76%) responded to FMT

Dogs with a long-lasting response to FMT had lower DI at inclusion compared to non-responders or shortlasting responders

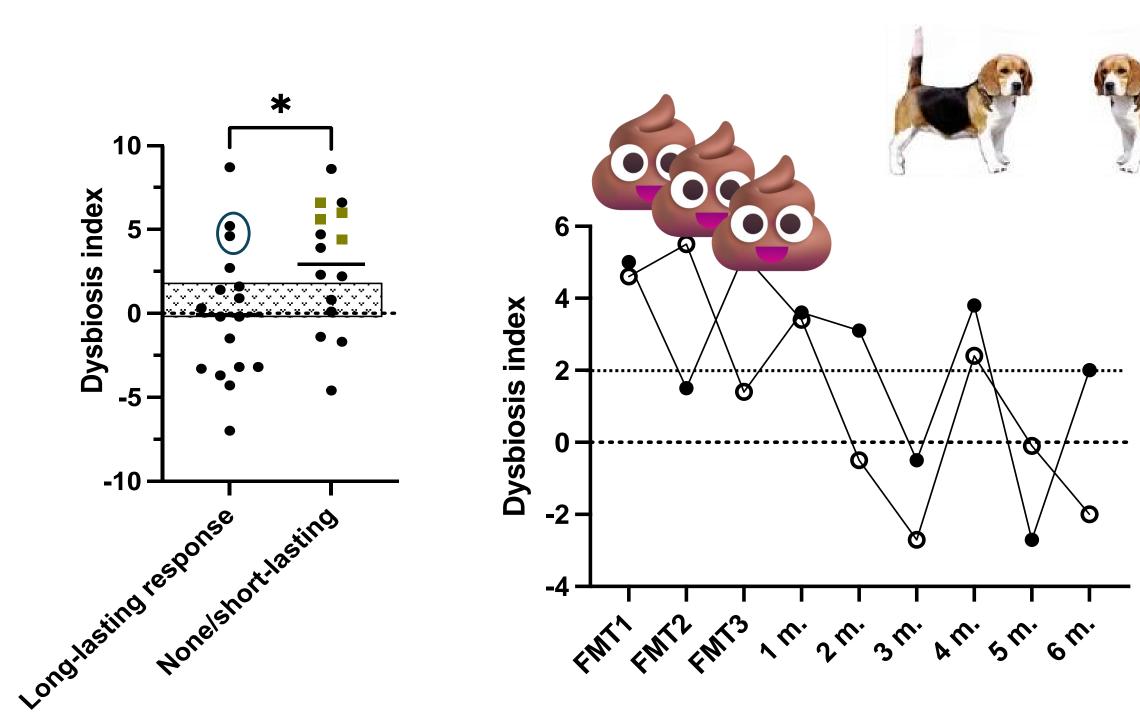
ИDР

Preliminary results – prospective FMT study DI at baseline

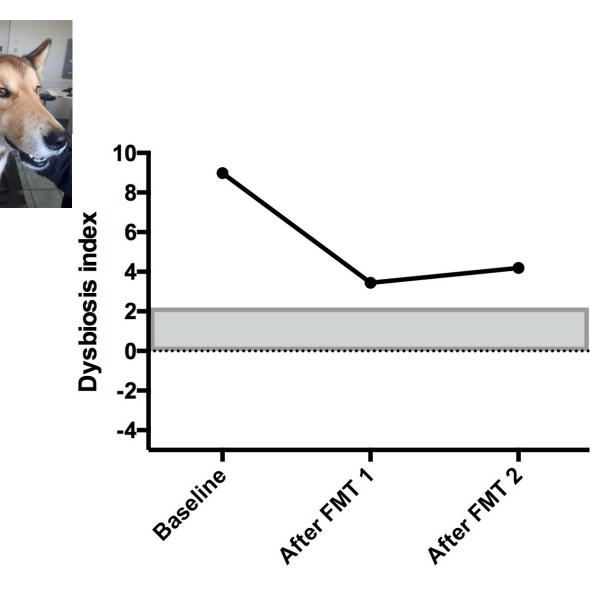


Dogs tx with antibiotics within 6 w. excluded

=responds to BA sequestrants


	Long-lasting	Non or short- lasting
Normobiosis	9/17 (53%)	3/15 (20%)
Mild dysbiosis	4/17 (23.5 %)	2/15 (13%)
Severe dysbiosis	4/17 (23.5)%	10/15 (67%)

"Kajsa", intact female medium-sized poodle, 11 Y

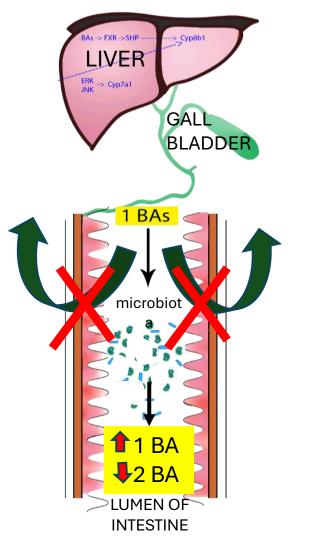


Tx for CE for 4 years w:

- Mono protein/hydrolyzed diet
- Pred q 48 hrs
- Olsalazine (5-ASA) q 48 hrs
- Diarrhea for 2 months, not responding to diet change.
- Partial response to û Pred

"Jurij", intact East Siberian Laika 10 Y/A, NRE

Main complaint: refractory diarrhea Immediate clinical improvement post FMT


Relapse within 4 weeks post FMT 3

BAR, normal BCS, but diarrhea every week

Persistently low *Clostridium hiranonis* increased risk of bile acid diarrhea (BAD)

Started cholestyramine (bile acid sequestrant) – diarrhea stopped

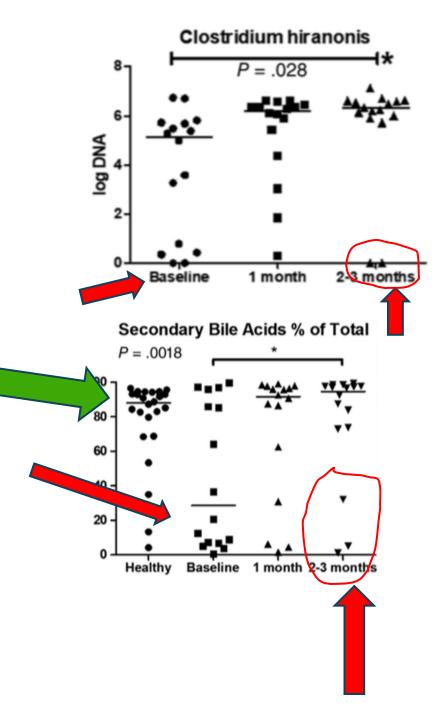
Bile Acid Diarrhea (BAD)

- Defective enterohepatic circulation
- Most commonly due to:
 - Malabsorption
 - Dysbiosis (lack of P. hiranonis)
- $\Rightarrow \uparrow \uparrow$ total or 1 BAs in the colon

⇒ watery diarrhea, urgency, bloating, nightly diarrhea, soiling accidents, pain, attacks of abdominal cramping

Responds to bile acid sequestrants

Received: 8 September 2018 Accepted: 21 March 2019
DOI: 10.1111/ivim.15493

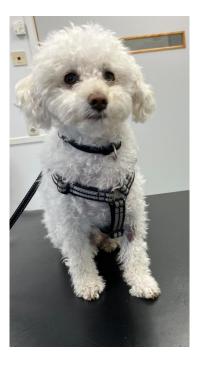

STANDARD ARTICLE

Longitudinal assessment of microbial dysbiosis, fecal unconjugated bile acid concentrations, and disease activity in dogs with steroid-responsive chronic inflammatory enteropathy

Journal of Veterinary Internal Medicine

Blake C. Guard¹ | Julia B. Honneffer¹ | Albert E. Jergens² | Michelle M. Jonika¹ | Linda Toresson^{3,4} | Yuri A. Lawrence¹ | Craig B. Webb⁵ |

- Healthy dogs (n=24) significantly higher % of secondary BAs than dogs with CE (n=23)
- % of secondary BAs improves in CE dogs with corticosteroid treatment
- Abundance of C hiranonis improves over time w corticosteroid treatment
- But not in some dogs.....



Referral, main complaint: nausea, severe borborygmia, signs of abdominal pain, lethargy.

Does not want to play or go for longer walks

Very difficult decrease corticosteroids; on daily tx Tapering \rightarrow worsening of borborygmia, lethargy and pain No diarrhea, vomiting before started on corticosteroids

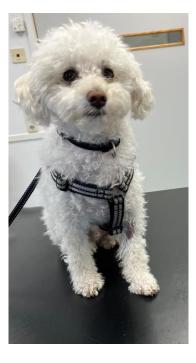
Dietary trials: "GI" diet, low fat diet, hydrolyzed soy based diet (current) Corticosteroids q 24 hrs, CSA q 58 hrs (1 mg budesonid q 48 hrs, 3.5 mg methylpred q 48 hrs)

Clin. ex: tense abdomen, vocalizes on abdominal palpation. Mild-mod. hypotrichosis, mild generalized erythema, mildly thin and paper-like skin

CBC + serum biochemistry: WNL

Abdominal ultrasound scan: mild amount of "speckles" in the duodenum and jejunum, remaining WNL

Change of treatment: 1. New dietary trial 2. Stop CSA 3. +/- FMT Home made balanced diet of horse meat and potatoe (w. nutritionist)


Canine Microbiota Dysbiosis Index (real-time PCR)

Canine Microbiota Dysbiosis Index (real- 6.4 <0 + 1),2) time PCR)

The Dysbiosis Index (DI) is significantly increased, consistent with a major shift in the overall diversity of the intestinal microbiota.

For more information on intestinal dysbiosis, visit https://tx.ag/DysbiosisGI

Clostridium hiranonis	0.1	5.1 - 7.1	log DNA -	3),1)
Faecalibacterium	3.2	3.4 - 8.0	log DNA -	1),4)
Turicibacter	5.6	4.6 - 8.1	log DNA	5),1)
Streptococcus	6.7	1.9 - 8.0	log DNA	6),1)
E. coli	6.5	0.9 - 8.0	log DNA	7),1)
Blautia	9.7	9.5 - 11.0	log DNA	1),8)
Fusobacterium	8.6	7.0 - 10.3	log DNA	9),1)

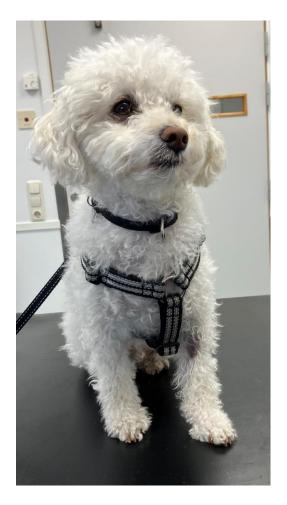
1 month later: slightly more alert, some boborygmia but generally improved after diet change

2 months later: More active, started playing a little

Tapered methylpred 0.5 mg q 48 hrs to 3 mg q 48 hrs – OK \rightarrow Further tapering not possible

Still on 1 mg budesonide q 48 hrs

DI 2 months after new dietary trial


Canine Microbiota Dysbiosis Index (real-time PCR)

Canine Microbiota Dysbiosis Index (real- 3.1 <0 + 1),2) time PCR)

The Dysbiosis Index (DI) is significantly increased, consistent with a major shift in the overall diversity of the intestinal microbiota.

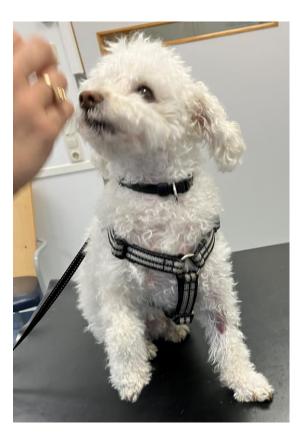
For more information on intestinal dysbiosis, visit https://tx.ag/DysbiosisGI

Clostridium hiranonis	2.2	5.1 - 7.1	log DNA	-	1),3)
Faecalibacterium	2.5	3.4 - 8.0	log DNA	-	1),4)
Turicibacter	5.0	4.6 - 8. <mark>1</mark>	log DNA		1),5)
Streptococcus	3.7	1.9 - 8.0	log DNA		1),6)
E. coli	6.6	0.9 - 8.0	log DNA		7),1)
Blautia	9.5	9.5 - 11.0	log DNA		1),8)
Fusobacterium	8.4	7.0 - 10.3	log DNA		9),1)

Still requiring daily doses of corticosteroids Marked dysbiosis and lack of *P. hiranonis* despite:

- 4 dietary trials
- 2 different immunomodulatory tx

Some people with BA dysmetabolism \Rightarrow abdominal pain, flatulence, lethargy, and bloating as main clinical sign \Rightarrow improves with BA sequestrants (Gupta et al 2015)


Started cholesevelam (BA sequestrants)

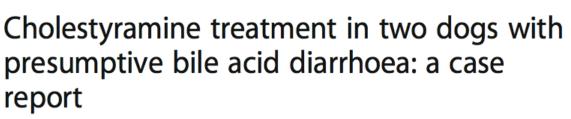
Within one week: much more active, started playing a lot in the evenings

Plays more than he has done in several years

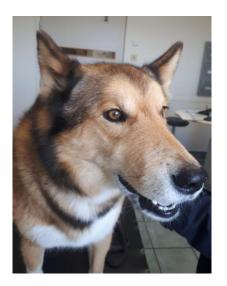
No pain on abdominal palpation at two follow-up visits

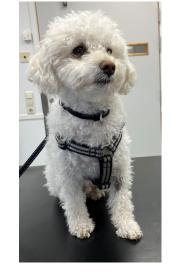
Managed to slowly taper corticosteroids with 33%, continuing to slowly taper the dose

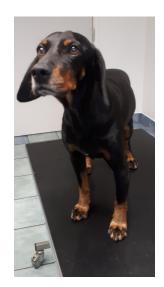
Clinical application of fecal DI


- $\uparrow \uparrow$ DI, especially with $\downarrow \downarrow$ *P. hiranonis* suggests presence of active CE
 - useful as additional marker for chronic GI disease in animals with unspecific clinical signs
 - useful as staging
 - identify early changes in patients at risk early intervention
- Assess response to treatment
- Severely increased DI is associated with more severe changes in gut environment:
 - may be a predictor for poorer long-term remission, as animals with persistent high DI have often relapse of clinical signs, and require long-term management
 - animals with high DI often have short-lived response to FMT, requiring repeated FMTs
 - persistently high DI with low P. hiranonis in dogs with clinical signs refractory to multimodal therapy may be an indication for Bile Acid Malabsorption (BAM
- Screen for healthy FMT donors and assess FMT outcome

Toresson et al. Canine Medicine and Genetics (2021) 8:1 https://doi.org/10.1186/s40575-021-00099-x Canine Medicine and Genetics


CASE REPORT


Open Access



L. Toresson^{1,2*}, J. M. Steiner³ and J. S. Suchodolski³

TEXAS A&M UNIVERSITY Gastrointestinal Laboratory

Thank you! Questions?

